
1 

Vivek Sarkar 
Rice University 

vsarkar@rice.edu 

SC08 Workshop on “Power Efficiency and the Path to Exascale Computing”,  
November 16, 2008 

TeraScale 
Embedded 

PetaScale 
Departmental 

ExaScale 
Data Center 



2 

Acknowledgment: DARPA Exascale Software
 Study participants (work in progress) 

•  Saman Amarasinghe (MIT) 
•  Dan Campbell (Georgia Tech) 
•  Bill Carlson (IDA) 
•  Andrew Chien (Intel) 
•  Bill Dally (Stanford) 
•  Mootaz Elnozahy (IBM) 
•  Mary Hall (U. Utah) 
•  Robert Harrison (ORNL) 
•  Bill Harrod (DARPA) 
•  Kerry Hill (AFRL) 
•  Jon Hiller (STA) 
•  Norman Jouppi (HP) 
•  Sherman Karp (STA) 

•  Charles Koelbel (Rice) 
•      David Koester (MITRE) 
•      Peter Kogge (Notre Dame) 
•  John Levesque (Cray) 
•  Daniel Reed (Microsft) 
•  Mark Richards (Georgia Tech) 
•  Vivek Sarkar (Rice) 
•  Al Scarpelli (AFRL) 
•  Robert Schreiber (HP) 
•  John Shalf (LBL) 
•  Allan Snavely (SDSC) 
•  Thomas Sterling (LSU) 

DISCLAIMER: The views, opinions, and/or findings contained in this presentation are those of 
the author(s) and should not be interpreted as representing the official policies, either 
expressed or implied, of the Defense Advanced Research Projects Agency or the Department 
of Defense.  



3 

Extreme Scale Systems 
•  Characteristics of Extreme Scale systems: 

  Massive multi-core (~ 1000 cores/chip) 
  Performance driven by parallelism, constrained by energy 
  Three system classes --- Exascale Data Center, Petascale Departmental,

 Terascale Embedded 
•  Key Software Challenges: 

  Concurrency 
  Energy Management 
  Resilience 

•  Software stack: 
  Application frameworks & Tools 
  Programming models and languages 
  Libraries 
  Compilers 
  Runtimes for scheduling, memory management,     

 communication, performance monitoring,          
 power management, resilience 

  Operating Systems 

Focus of 
this talk 

Productivity of upper 
levels depends on 
scalability of lower 

levels 



4 

The Exascale Software Challenge 
How to bridge the gap between Simplistically Scaled 

projections and reality of application software? 

(p
er

 c
yc

le
) 

Hardware projection based on simplistic scaling 

Concurrency delivered by  
business-as-usual software stack 

(notional) 

“ExaScale Computing Study: Technology Challenges in  Achieving Exascale Systems”, P.Kogge et al 



5 

Challenges in Management of
 Parallelism and Locality 

OS Challenges: 
•  Scalability 
•  Locality 
•  Resource Management as Spatial Partitioning instead of

 Time Slicing & Interrupts 
•  Scalable access to Device Drivers; User Mode access of

 Messaging Hardware Resources instead of via OS 

Run time Challenges 
•  Locality-sensitive Task Scheduling 
•  Fine-grained Communications 
•  Combining Synchronization with Dynamic Parallelism 
•  Memory Management 



6 

Challenges in Management of
 Parallelism and Locality (contd) 

Compiler Challenges 
•  Extracting Useful Parallelism from Ideal Parallelism 
•  Optimizations for Vertical and Horizontal Locality 
•  Synchronization Optimizations 
•  Communication Optimizations 
•  Energy Optimizations 
•  Global Auto-tuning and Dynamic Optimization 

Library Challenges: 
•  Asynchronous scheduling of library tasks 
•  Communication libraries for fine-grained asynchronous

 data transfers 
•  Data Management and I/O Libraries for Extreme Scale 



7 

Concurrency Challenge 
•  How will 1000x increase in concurrency be delivered

 to Extreme Scale Systems? 
 Weak Scaling by increase in data size, WS 

 Weak Scaling by increase in computation per datum, WT 

 Strong Scaling by increasing parallelism in fixed computation, S 

•  Over Provisioning required for Latency Hiding, L 
 L is determined by latency hiding requirements --- memory access

 time, fraction of memory operations (parameterized by memory
 hierarchy level 

 Assume L ~ 100x 

•  How much additional parallelism must come from
 software, relative to today’s applications? 
 WS*WT*S needs to be > 105 



8 

Concurrency Challenge (contd) 
•  WS is limited by DRAM cost and memory-computation

 ratio 
 Petascale ~ 1 byte/FLOPS 
 Exascale ~ 0.01 bytes/FLOPS ?? 
  Improving memory-computation balance is expensive 

•  50-50 cost balance dictates 0.004 bytes/FLOPS 
•  90-10 cost balance dictates 0.04 bytes/FLOPS 

 Assume WS ~ 10x 

•  WT is limited by application domain and algorithm 
 Assume WT ~ 10x 

 Software must deliver S ~ 1000x increase in Strong
 Scaling to use full capability of Extreme Scale systems 



9 

Concurrency Challenge: Implications on Software Stack 

•  Fine-grained Parallelism 
  Need to reduce task granularity by S ~ 1000x 
Task overhead in software stack needs to be reduced by 1000x 

•  Fine-grained Synchronization 
  S-fold increase in number of synchronizations performed 
 Synchronization overhead in software stack needs to be reduced by

 1000x 

•  Fine-grained Communication 
  For 3D codes, surface area decreases by S2/3 ~ 100x, as task size

 decreases by factor of S ~ 1000x 
 Communication overhead needs to be reduced by 100x 

•  Scalability 
  Amdahl’s Law limit is reduced by a factor of S ~ 1000x 
 Sequential bottlenecks (critical path) in software stack needs to be

 reduced by 1000x 



10 

Challenges in Application Development 

•  Explore strong scaling and “new-era” weak scaling
 approaches for Extreme Scale applications e.g., 
  Multi-scale 
  Multi-physics (multi-models), Coupled models, New models 
  Mitigation analysis 
  Data-derived models 

•  Explore new application areas for Extreme Scale 
  Data mining e.g., Smith-Waterman 
  Real-time surveillance e.g., real-time analysis of 1 million sensors

 on a Departmental Extreme Scale system 
•  Domain-specific Application Frameworks for Extreme Scale 

  Extend approaches based on global arrays to irregular data
 structures (sparse tree, hash table) with fine-grained asynchronous
 parallelism 

  Integrate virtualization-based approaches (e.g., NAMD) with SPMD
 models such as MPI 

  Interoperability of frameworks for different domains in multi-physics
 applications 



11 

Energy Management Challenge 

•  Data movement and memory accesses will be
 most significant contributors to energy
 consumption in Exascale Systems (among
 contributors under software control) 

•  Locality challenges 
 Spatial locality 
 Temporal locality 
 Data motion metrics and optimization 

•  Other Energy Challenges for Software Stack 
 Dynamic Voltage & Frequency Scaling 
 Power management of individual cores 
 Power management for Real-time deadlines 
 Reduction of Thermal Stresses and Hot Spots 



12 

Combined metric for Concurrency & Energy 

•  Combined figure of merit for concurrency, energy,
 resilience 
  (Total energy) * (Elapsed time) 
 Analogous to energy-delay product 
 Above terms must include overheads for resilience support 

•  C-A-S-H metric: The cost of an execution of
 application A on an Extreme Scale platform with
 system software stack S and hardware H can be
 expressed as 
 C(A, S, H) = TotalEnergy(A, S, H) * TotalElapsedTime(A, S, H) 
 Use to compare Sold vs. Snew for same (A,H) pairs 
 TotalEnergy will be driven by localilty metrics 
 TotalElapsedTime will be driven by concurrency metrics 



13 

Individual Metrics for Concurrency & Energy 

Concurrency: 
 Thread level concurrency – active and pending (number of

 threads) 
 Thread efficiency – fraction of total threads that are active at

 any one time doing useful work 
 Synchronization overhead (clock cycles) and scalability

 (clock cycles as a function of number of threads) 
 Thread management overhead (clock cycles) 

Energy: 
 Energy to solution 
 Performance per Joule (Op/J, Flop/J, Bytes transferred/J,

 energy oriented microbenchmarks) 
 Locality metrics (data motion)  



14 

Towards a New Software Stack for Extreme Scale Systems  

•  New system software “stack” that has the following
 features: 
 Focus on extreme scale concurrency and locality  
 Focus on energy aware scalable techniques for resilience 
 Exploit and handle new trends in technology e.g., heterogeneity,

 many-core 
 Addition of energy awareness in all metrics 

•  Self awareness and machine learning based on real
 time data gathering and analysis, and learned history
 lessons 
 Focus on energy, concurrency, and resiliency 

•  Will need long-term research that goes beyond
 industry focus on cloud computing 



15 

Software Stack and Hardware Interface 

!!

!

!

!

!

!

! !"#!

$%&'()*!#+,-./(0!

/%1+23-(/+%!

4&2+52-3362!6(,78!

9'(&'()*!#+,-./(0!

26&26)6%(-(/+%!!

:+3&/.62*!

$%&'()*!.+,-./(0!;6),2/&(/+%)!

4&2+52-33628!!!!9'(&'()*!

363+20!1++(&2/%(<!)=-26;!!

26)+'2,6!;63-%;)!

>'%(/36!

$%&'()*!)03?/+)/)!/%1+7<!

363+20!-,,6))!

&-((62%!/%1+7!

9'(&'()*!-;;26))!

2-%56)!@/(=!.+,-./(0!

;6),2/&(+2)<!&2616(,=!

+2!,-,=/%5!/%)(2',(/+%)!

!"621+23-%,6!(++.)!

$%&'()*!!-;;26))!)(26-3<!

,+33'%/,-(/+%)!-%;!$A9!&-((62%)!!

!!!!#+,-./(0!!!!/%1+!!

! B03?/+)/)!

/%1+23-(/+%! !

#+,-./(0!;6),2/&(/+%)!#+,-./(0!!!!!!!!!!!!!!!!!!!!!!!!!!!!

/%1+! !

C,,6))!&-((62%)!

26*!;-(-!

)(2',('26)<!

363+20!

1++(&2/%()<!,++7!

&-((62%)!

!

!

!!!!!!!!B03?/+)/)!!!!!!/%1+7!!!!!

!!!!!!!!DE6%(!!!!!!26+2;62/%5)!

F6,.-2-(/E6!G-2;@-26!C"$!

G626!-26!!"#$%&'(&)*#+?'(!%+(!&26),2/?6;!-,(/+%)<!1+2!6H-3&.6!-;;26))!2-%56)!(=-(!-26!-,,6))6;!2-%;+3!?'(!(=6!

=-2;@-26!,-%!;+!@=-(!/(!./I6)!@/(=!(=/)!/%1+7!

"26),2/&(/E6!G-2;@-26!C"$!

G626!-26!)&6,/1/6;!-,(/+%)!1+2!=-2;@-26!(+!(-I6<!1+2!6H-3&.6<!;+!%+(!&2616(,=!(=/)!-;;26))!2-%56!

G-2;@-26!

:-,=6!!!!!!!!!

&2616(,=!

;/26,(/E6)!
"621+23-%,6!,+'%(62)!!!!! !

! -;;26))!)(26-3!

F/26,(/E6)!(+!

=-2;@-26!(+!

26,+%1/5'26!

Software Stack 

Hardware Interface 

Specification of a 
“hardware interface” 
should drive 
hardware innovation 
in addressing 
requirements of 
Software Stack 



16 

Candidate items for Hardware Interface 
•  Memory hierarchy configurations 

  Cache sizes & geometries, hardware vs. software cache coherence 
  Register file sizes and data widths 

•  Memory access patterns 
  Address ranges that should bypass cache 
  Address ranges that require hardware coherence 
  Address ranges for which coherence will be managed by software 
  Address ranges with values that are guaranteed to be read-only (immutable) for certain

 application phases 

•  Network bandwidth partitioning for different forms of data
 movement and communication 
  PGAS, RDMA, Message passing, Stream processing, … 

•  Other network reconfigurability parameters 
  Topology, Packet size, … 

•  Power management 
  Frequency scaling, Voltage scaling, … 

•  Performance profiling 
  Lightweight profiling, Identification of events to be counted and sampled, … 

•  Resilience 
  Identification of threads with lower resilience requirements e.g., for which software can

 perform error detection and recovery 



17 

Integrating Tools Requirements into
 the Software Stack 

Programming Model

Express parameterized

data partitions, and 

alternatives

Hardware Performance Counters

Collect processor, memory hierarchy, interconnect measurements

Compiler
Translate parameterized layouts

Multiple versions

Socket optimizations (mem., cores)

Cross-processor communication

Optimization decision tree

Run-Time & Operating System
Dynamic communication 

optimization (parameterized)

Thread scheduling

Optimization decision tree

Data Collection 

& Analysis
Select Perf. Counters

Detect anomalies

Toggle data collection

Store statistics

Companion

Computations
Monitor data collection

Inform user of anomalies

Track back to code

Autotuning

Experiments Engine

Evaluate alternative mappings

Collect search space statistics

Provide feedback

Experiments Engine

Visualization of Execution

& Feedback

Interactive Tools 

Software Stack 

Hardware API 



18 

Adding Global Self-Awareness to  
the Exascale Software Stack 

Application Frameworks 
Programming Models 
Compilers 
Computational Libraries 
Task Scheduling Runtime 
Memory Management Runtime 
Communication Runtime 
Power Management Runtime 
Resilience Runtime 
Profiling & Monitoring Runtime 
Exascale OS 

Data Center  Departmental       Embedded 

N
od

e-
le

ve
l  

Lo
ca

l E
xa

sc
al

e 
So

ftw
ar

e 
St

ac
k 

. . . 

Actuators + Controls 
Node-level Stack 

Sensors + I/O 

G
l
o
b
a
l 

C
o
n
t
r
o
l 

Local 
 Controls 

Actuators + Controls 
Node-level Stack 

Sensors + I/O 

Actuators + Controls 
Node-level Stack 

Sensors + I/O 



19 

Why Now? 

•  Hardware has changed dramatically while system
 software has remained stagnant  

•  Previous approaches have not looked at co-design of
 multiple levels in the system software stack (OS,
 runtime, compiler, libraries, application frameworks) 

•  Need to exploit new hardware trends (e.g., manycore,
 heterogeneity) that cannot be handled by existing
 software stack 

•  Emerging software technologies that address new
 software stack components exist, but have not been
 fully integrated with system software, nor addressed
 all Extreme Scale software requirements e.g., 
  Cilk, CUDA, Map Reduce 
  HPCS languages 
  Google file system 
  Autonomic computing 



20 

Summary 

•  New research needed to build software stack for
 future Extreme Scale systems --- ExaScale Data
 Center, PetaScale Departmental, and TeraScale
 Embedded 

•  New software stack must support orders-of
-magnitude increase in strongly-scaled
 parallelism, while staying within Extreme Scale
 Memory & Power Constraints 

•  New software stack necessary to realize
 advances in upper layers of software ---
 applications, programming models --- on
 Extreme Scale systems 



21 

Come to our BOF! 

•  Exascale Software Challenges Birds-of-a-Feather Session 
  Allan Snavely, Vivek Sarkar 

•  Tuesday,  05:30PM - 07:00PM, Room 19A/19B   
•  Abstract: This BOF draws together experts and other interested parties focused on

 understanding challenges and developing promising approaches in developing robust,
 scalable, and efficient software to run at Exascale (nominally 1000x faster/larger/more
 concurrent than today's software). The session will begin with a high-level summary of
 an ongoing study on Exascale Software, and will be followed by 5-minute talks on
 topics that include: Exascale science drivers: what computations are amenable
 algorithmically to scale to 1000x? Coupling: Strategies for assembling coupled models
 from petascale components, what interfaces are needed to enable such "extreme
 coupling" to be efficient? Metrics: what metrics such as spatial and temporal locality,
 parallelism, and asynchrony are important to consider in Exascale software
 development? Compiler and runtime: what design principles are required to enable
 robust, efficient, scalable Exascale code generation and execution? Operating system:
 how should runtime support be partitioned between an Exascale Thin OS (ETOS) and
 user-mode system services? 


